Analysis of the Bias on the Beidou GEO Multipath Combinations

نویسندگان

  • Yafei Ning
  • Yunbin Yuan
  • Yanju Chai
  • Yong Huang
چکیده

The Beidou navigation satellite system is a very important sensor for positioning in the Asia-Pacific region. The Beidou inclined geosynchronous orbit (IGSO) and medium Earth orbit (MEO) satellites have been analysed in some studies previously conducted by other researchers; this paper seeks to gain more insight regarding the geostationary earth orbit (GEO) satellites. Employing correlation analysis, Fourier transformation and wavelet decomposition, we validate whether there is a systematic bias in their multipath combinations. These biases can be observed clearly in satellites C01, C02 and C04 and have a great correlation with time series instead of elevation, being significantly different from those of the Beidou IGSO and MEO satellites. We propose a correction model to mitigate this bias based on its daily periodicity characteristic. After the model has been applied, the performance of the positioning estimations of the eight stations distributed in the Asia-Pacific region is evaluated and compared. The results show that residuals of multipath series behaves random noise; for the single point positioning (SPP) and precise point positioning (PPP) approaches, the positioning accuracy in the upward direction can be improved by 8 cm and 6 mm, respectively, and by 2 cm and 4 mm, respectively, for the horizontal component.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of BeiDou Satellite Measurements with Code Multipath and Geometry-Free Ionosphere-Free Combinations

Using GNSS observable from some stations in the Asia-Pacific area, the carrier-to-noise ratio (CNR) and multipath combinations of BeiDou Navigation Satellite System (BDS), as well as their variations with time and/or elevation were investigated and compared with those of GPS and Galileo. Provided the same elevation, the CNR of B1 observables is the lowest among the three BDS frequencies, while ...

متن کامل

BDS code bias periodical mitigation by low-pass filtering and its applications in precise positioning

The code-phase divergences, which are minimal for GPS, GLONASS, and Galileo satellites, are commonly found in BeiDou Navigation Satellite System (BDS) Geostationary Orbit (GEO), Inclined GeoSynchronous Orbit (IGSO) and Medium Earth Orbit (MEO) satellites. Several precise positioning applications which use code observations are severely affected by these code biases. We present an analysis of co...

متن کامل

Precise Orbit Determination of BeiDou Satellites with Contributions from Chinese National Continuous Operating Reference Stations

The precise orbit determination (POD) for BeiDou satellites is usually limited by the insufficient quantity and poor distribution of ground tracking stations. To cope with this problem, this study used the GPS and BeiDou joint POD method based on Chinese national continuous operating reference stations (CNCORS) and IGS/MGEX stations. The results show that the 3D RMS of the differences of overla...

متن کامل

Characteristics of the BDS Carrier Phase Multipath and Its Mitigation Methods in Relative Positioning

The carrier phase multipath effect is one of the most significant error sources in the precise positioning of BeiDou Navigation Satellite System (BDS). We analyzed the characteristics of BDS multipath, and found the multipath errors of geostationary earth orbit (GEO) satellite signals are systematic, whereas those of inclined geosynchronous orbit (IGSO) or medium earth orbit (MEO) satellites ar...

متن کامل

BeiDou Geostationary Satellite Code Bias Modeling Using Fengyun-3C Onboard Measurements

This study validated and investigated elevation- and frequency-dependent systematic biases observed in ground-based code measurements of the Chinese BeiDou navigation satellite system, using the onboard BeiDou code measurement data from the Chinese meteorological satellite Fengyun-3C. Particularly for geostationary earth orbit satellites, sky-view coverage can be achieved over the entire elevat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2016